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A generalization of the Onsager-Machlup theory from equilibrium to nonequilibrium
steady states and its connection with recent fluctuation theorems are discussed for a
dragged particle restricted by a harmonic potential in a heat reservoir. Using a functional
integral approach, the probability functional for a path is expressed in terms of a
Lagrangian function from which an entropy production rate and dissipation functions are
introduced, and nonequilibrium thermodynamic relations like the energy conservation
law and the second law of thermodynamics are derived. Using this Lagrangian function
we establish two nonequilibrium detailed balance relations, which not only lead to
a fluctuation theorem for work but also to one related to energy loss by friction.
In addition, we carried out the functional integral for heat explicitly, leading to the
extended fluctuation theorem for heat. We also present a simple argument for this
extended fluctuation theorem in the long time limit.
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1. INTRODUCTION

Fluctuations play an important role in descriptions of nonequilibrium phenomena.
A typical example is the fluctuation-dissipation theorem, which connects transport
coefficients to fluctuations in terms of auto-correlation functions. This theorem
can be traced back to Einstein’s relation, (1) Nyquist’s theorem, (2,3) Onsager’s ar-
guments for reciprocal relations,(4–6) etc., and it was established in linear response
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theory in nonequilibrium statistical mechanics near equilibrium.(7–9) Another ex-
ample of a fluctuation theory is Onsager-Machlup’s fluctuation theory around
equilibrium.(10–12) It is characterized by the usage of a functional integral tech-
nique for stochastic linear relaxation processes, and leads to a variational principle
known as Onsager’s principle of minimum energy dissipation. Many efforts have
been devoted to obtain a generalization, for example, to the cases of nonlinear
dynamics(13–17)and nonequilibrium steady states.(18–23)

Recently, another approach to fluctuation theory leading to fluctuation theo-
rems has drawn considerable attention in nonequilibrium statistical physics.(24–26)

They are asymmetric relations for the distribution functions for work, heat, etc., and
they may be satisfied even in far from equilibrium states or for non-macroscopic
systems which are beyond conventional statistical thermodynamics. Originally
they were proposed for deterministic chaotic dynamics, but they can also be ob-
tained for stochastic systems.(27–30) Moreover, laboratory experiments to check
these fluctuation theorems have been made.(31–36)

From our accumulated knowledge on fluctuations, it is meaningful to ask
for relations among the different fluctuation theories. It is already known that
the fluctuation-dissipation theorem, as well as Onsager’s reciprocal relations, can
be derived from fluctuation theorems near equilibrium states. (24,28,37,38) The heat
fluctuation theorem can also be regarded as a refinement of the second law of
thermodynamics.

The principal aims of this paper are twofold. First, we generalize Onsager and
Machlup’s original fluctuation theory around equilibrium to fluctuations around
nonequilibrium steady states using their functional integral approach. For this
nonequilibrium steady state Onsager-Machlup theory we discuss the energy con-
servation law (i.e. the analogue of the first law of thermodynamics), the second law
of thermodynamics, and Onsager’s principle of minimum energy dissipation. As
the second aim of this paper, we discuss fluctuation theorems based on our gener-
alized Onsager-Machlup theory. Since the systems we consider are in a nonequi-
librium steady state, the equilibrium detailed balance condition is violated. We
derived generalized forms of the detailed balance conditions for nonequilibrium
steady states, which we call nonequilibrium detailed balance relations, and show
that the work fluctuation theorem for an equilibrium initial state can be derived
from it. Later, we prove the work fluctuation theorem for any initial state in the
long time limit by carrying out a functional integral explicitly. To demonstrate the
efficacy of nonequilibrium detailed balance as an origin of fluctuation theorems,
we also show another form of nonequilibrium detailed balance, which leads to
another fluctuation theorem for energy loss by friction. We also show how a heat
fluctuation theorem can be derived from our generalized Onsager-Machlup the-
ory, by carrying out explicitly a functional integral and reducing its derivation to a
previous one discussed in Refs. 39 and 40. In addition, we give a simple argument
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leading to the long-time (t → +∞2 ) fluctuation theorem for heat, based on the
independence between the work distribution and the energy-difference distribution
in this limit.

A generalization of the Onsager-Machlup theory of fluctuations in equilib-
rium states to nonequilibrium steady states can be stated as follows. Onsager and
Machlup considered a relaxation process to an equilibrium state described by local
variables a j with zero averages: a j = 0 in equilibrium, and started their argument
from a Langevin equation as (11)

∑

k

(
R jk

dak

dt
+ s jkak

)
= ζ j (1)

with a random thermal noise ζ j . Here, R = (R jk) represents a matrix incorpo-
rating the linear laws of irreversible thermodynamics, or equivalently the linear
constitutive equations for the hydrodynamic equations, and s = (sjk ) represents a
matrix incorporating the first non-vanishing terms (second order) in an expansion
of the entropy of the system in powers of the fluctuations {a j } j . Now we generalize
Eq. (1) to a nonequilibrium steady state. In that case we take into account that the
variables a j in the nonequilibrium steady state are different from the ones in equi-
librium, so the average of a j is not zero anymore in the nonequilibrium steady state.
We then introduce a j as the average of a j in the nonequilibrium steady state. (Note
a j = 0 in equilibrium, so that a j can be regarded as a nonequilibrium parameter.)
Eq. (1) should then be modified as

∑
k

[
R jkd (ak − ak) /dt + s jk (ak − ak)

] = ζ j

in a nonequilibrium steady state, namely
∑

k

[
R jk

dak

dt
+ s jkak − s jkak

]
= ζ j (2)

noting that
∑

k s jkak is a non-zero constant showing a nonequilibrium ef-
fect. Mathematically, the difference between the equilibrium Langevin equation
(1) and the nonequilibrium Langevin equation (2) is trivial, since it is only a con-
stant −∑

k s jkak . Physically, however, this difference is major, since as will be
shown in this paper it leads to a number of physical properties of the Onsager-
Machlup theory for nonequilibrium steady states, not found in their equilibrium
theory. We mention here two of them. First, a thermodynamics can be formulated
for the nonequilibrium steady state involving work (which is absent in the equi-
librium Onsager-Machlup theory), heat and internal energy. Second, a number of
fluctuation theorems can be derived, in their full dependence on the initial state of
the system. This can only be accomplished by calculations that go beyond those
determining the most probable path in the functional integral method to which both

2 The limit t → +∞ corresponds physically to that the time t is much bigger than any relaxation time.
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Onsager and Machlup in Refs. 11 and 12 and in a different, more general, context
also Bertini et al. in Refs. 18–20 restricted themselves. Therefore, although in this
paper we still use a linear Langevin equation, it generalizes at the same time the
(linear) Onsager-Machlup theory for general dissipative systems in equilibrium
to (linear) nonequilibrium steady states for such systems. This leads to new and
in principle experimentally verifiable fluctuation theorems for a class of linear
physical systems (beyond the most probable path alone) in nonequilibrium states.
Obviously a further generalization to the nonlinear regime would be of great inter-
est, but we have not attempted to do this in this paper, although our linear results
may well give some suggestions that might be relevant for the nonlinear regime
as well.

In this paper, we apply our theory to a specific nonequilibrium Brownian
particle model described by a Langevin equation (cf. Ref. 41). This model is
described by the Langevin equation

α
dy

dt
+ κy + αv = ζ (3)

[or equivalently Eq. (9) shown later], where y is the position of the Brownian
particle in the comoving frame, which moves with velocity v with respect to
the laboratory frame, α is the friction coefficient of the Brownian particle in the
fluid, and κ is the strength of the confining harmonic potential. The external force
to drag the particle with a constant velocity v will ultimately drive the system
to a nonequilibrium steady state. The correspondences R jk ↔ α, s jk ↔ κ , and
s jkak ↔ −αv with j = k = 1 between Eq. (2) and (3) are obvious, noting that
−αv is a nonequilibrium parameter like s jkak . Therefore, the behavior of the
dragged particle model is also a model of the nonequilibrium Onsager-Machlup’s
behavior. It has been used to discuss fluctuation theorems,(39,40,42–44) and also to
describe laboratory experiments for a Brownian particle captured in an optical
trap which moves with a constant velocity through a fluid, (32,43,44) as well as for
an electric circuit consisting of a resistor and capacitor. (35,45)

The outline of this paper is as follows. In Sec. 2, we introduce our model and
give some of its properties using a functional integral approach. In Sec. 3, we dis-
cuss a generalization of Onsager-Machlup’s fluctuation theory to nonequilibrium
steady states, and obtain the energy conservation law, the second law of ther-
modynamics, i.e. a nonequilibrium steady state thermodynamics, and Onsager’s
principle of minimum energy dissipation for such states. In Sec. 4, we introduce
the concept of nonequilibrium detailed balance, and obtain a fluctuation theorem
for work from it. In Sec. 5, we discuss another type of nonequilibrium detailed
balance, which leads to a fluctuation theorem for energy loss by friction. In Sec. 6,
we sketch a derivation of a fluctuation theorem for heat by carrying out a func-
tional integral and reducing it to the previous derivation. (39,40) In addition, we give
a simple argument for the heat fluctuation theorem in the long time limit. In Sec. 7,
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we briefly discuss inertial effects on fluctuation theorems, which lead to four new
fluctuation theorems. In Sec. 8, we summarize our results in this paper and discuss
some consequences of them.

2. DRAGGED PARTICLE IN A HEAT RESERVOIR

The system considered in this paper is a particle dragged by a constant
velocity v through a fluid as a heat reservoir. The dynamics of this system is
expressed by a Langevin equation

m
d2xt

dt2
= −α

dxt

dt
− κ (xt − vt) + ζt (4)

for the particle position xt at time t in the laboratory frame. Here, m is the particle
mass, and on the right-hand side of Eq. (4) the first term is the friction force with
the friction constant α, the second term is the harmonic potential force with the
spring constant κ to confine the particle, and the third term, due to the coupling to
the heat reservoir, is a Gaussian-white noise ζt , whose first two auto-correlations
are given by

〈ζt 〉 = 0, (5)

〈ζt1ζt2〉 = 2α

β
δ(t1 − t2) (6)

with the inverse temperature β of the reservoir and the notation 〈· · ·〉 for an
initial ensemble average. The coefficient 2α/β in Eq. (6) is determined by the
fluctuation-dissipation theorem and in the case v = 0 the stationary state distri-
bution function for the dynamics (4) is expressed by a canonical distribution. A
schematic illustration for this system is given in Fig. 1.

In this paper, except in Section 7, we consider the over-damped case in which
we neglect the inertial term md2xt/dt2, or assume simply a negligible small mass
m. Under this over-damped assumption, the Langevin equation (4) can be written
as

dxt

dt
= − 1

τ
(xt − vt) + 1

α
ζt (7)

with the relaxation time τ given by τ ≡ α/κ .
Equation (7) is for the position xt in the laboratory frame. On the other hand,

it is often convenient or simpler to discuss the nonequilibrium dynamics in the
comoving frame. (44,46) The position yt in the comoving frame for the particle in
our model is simply introduced as

yt ≡ xt − vt. (8)
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Fig. 1. Schematic illustration for a particle trapped by a harmonic potential dragged with a constant
velocity v in a reservoir. Here, x and y (0l and 0c) are the axes (the origins) for the laboratory (l)
and comoving (c) frame, respectively, in the direction of the motion of the particle. The particle is
at the position yt (xt ) at time t in the comoving (laboratory) frame, respectively, which are related
by yt = xt − vt . After the relaxation time τ ≡ α/κ , the system will reach a nonequilibrium steady
state.

Using this position yt , Eq. (7) can be rewritten as

dyt

dt
= − 1

τ
yt − v + 1

α
ζt , (9)

whose dynamics is invariant under the change yt → −yt and v → −v, noting
that the Gaussian-white noise property of ζt is not changed into ζt → −ζt . Note
that in the comoving Langevin equation (9) there is no explicit t-dependent term
in the dynamical equation, while the laboratory Langevin equation (7) has a t-
dependence through the term vt , meaning Eq. (9) to be a little simpler than Eq.
(7). The constant term −v in Eq. (9) expresses all effects of the nonequilibrium
steady state in this model.

The system described by the Langevin equation (9), or equivalently Eq. (7),
approaches a nonequilibrium steady state, because the particle will, for t � τ ,
move steadily due to the external force that drags it through the fluid. This force
is given by −κyt , so the work rate Ẇ (v)(yt ) to keep the particle in a steady state is
expressed as

Ẇ (v)(yt ) = −κytv. (10)
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We note that since Ẇ (0)(yt ) = 0 for v = 0, i.e. for the equilibrium state considered
by Onsager and Machlup, there is then no work done, while in the nonequilibrium
steady state for v 	= 0 work is done.3

We consider the transition probability F( yt y0
∣∣

t t0
) of the particle from y0(≡ yt0 )

at time t0 to yt at time t , which is introduced as a transition integral kernel for
the probability distribution f (yt , t) at the position yt at time t , with the initial
distribution f (y0, t0), as

f (yt , t) =
∫

dy0 F

(
yt

t

∣∣∣∣
y0

t0

)
f (y0, t0). (11)

We can use various analytical techniques, for example the Fokker-Planck equation,
whose solution gives the probability distribution f (yt , t), (17,47) to analyze the
transition probability for the dynamics expressed by the Langevin equation (9).
As one such technique, motivated by Refs. 11 and 12, we use in this paper the
functional integral technique. Using this technique, the transition probability can
be represented as a functional integral:

F

(
yt

t

∣∣∣∣
y0

t0

)
=

∫ yt

y0

Dys exp

[∫ t

t0

ds L (v)(ẏs, ys)

]
(12)

where L (v)(ẏs, ys) is the Lagrangian function for this stochastic process, defined
by

L (v)(ẏs, ys) ≡ − 1

4D

(
ẏs + 1

τ
ys + v

)2

, (13)

where D is the diffusion constant given by the Einstein relation D ≡ 1/(αβ). [We
outline a derivation of Eq. (12) from Eq. (9) in Appendix A.] Here, the functional
integral on the right-hand side of Eq. (12) is introduced as

∫ yt

y0

Dys Xt ({ys})

= lim
N→+∞

(
1

4π D�tN

)N/2 ∫
dytN−1

∫
dytN−2 · · ·

∫
dyt1 Xt ({ys}) (14)

for any functional Xt ({ys}), with tn ≡ t0 + n�tN , n = 1, 2, . . . , N , �tN ≡
(t − t0)/N , the initial time t0, the final time tN = t , the initial position y0, and
the final position yt . Here, we use the symbol {ys} in Xt ({ys}) to show that
Xt ({ys}) is a functional of {ys} with s ∈ [t0, t]. It is important for later to note that

3 Mathematically, the v-dependence in the Langevin equation (9) can formally be removed by changing
the variable yt by yt + vτ (cf. Ref. 54).
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from the representation (12) of the transition probability F( yt y0
∣∣

t t0
) the functional

exp[
∫ t

t0
ds L (v)(ẏs, ys)] can be regarded as the probability functional of the path

{ys}s∈[t0,t].
For the Lagrangian function (13), the functional integral on the right-hand

side of Eq. (12) can actually be carried out using Eq. (14), to obtain, by a simple
generalization of the well-known equilibrium (v = 0) case,

F

(
yt

t

∣∣∣∣
y0

t0

)
= 1√

4π DTt
exp

{
− [yt + vτ − (y0 + vτ ) bt ]

2

4DTt

}
, (15)

where bt and Tt are defined by bt ≡ exp[−(t − t0)/τ ] and Tt ≡ (τ/2)(1 − b2
t ),

respectively, so that Tt = t − t0 + O((t − t0)2).4 Equation (15) is simply a well
known form of the transition probability for the Smoluchowski process. (17) Insert-
ing Eq. (15) into Eq. (11), using the normalization condition

∫
dy0 f (y0, t0) = 1,

and taking the limit t → +∞, we can show that for an arbitrary initial distribu-
tion f (y0, t0), the probability distribution f (yt , t) approaches to a nonequilibrium
steady state (ss) distribution:

fss(yt ) ≡ lim
t→+∞ f (yt , t) = feq (yt + vτ ) (16)

in the long time limit. Here, feq (y) is the equilibrium distribution function given
by

feq (y) =
√

κβ

2π
exp [−βU (y)] (17)

with the harmonic potential energy U (y) ≡ κy2/2. Equation (16) implies that
the steady state distribution fss(y) is simply given by the equilibrium canonical
distribution feq (y) by shifting the position y to y + vτ . [Note that there is no
kinetic energy term in the canonical distribution (17) under the over-damped
assumption.] Equation (16) implies that the average position of the particle is
shifted from the bottom y = 0 of the harmonic potential in the equilibrium state
to the position y = −vτ in the nonequilibrium steady state.

The functional integral approach has already been used to describe relax-
ation processes to thermal equilibrium with fluctuations and averages by On-
sager and Machlup. (11,12) In the next section, we generalize their argument
to non-equilibrium steady states, and construct a nonequilibrium steady state
thermodynamics. The results in Refs. 11 and 12 can always be reproduced from

4 A concrete calculation process of the functional integration to derive Eq. (15) from Eq. (12) is similar
to the one for the work distribution function which will be discussed in Sec. 4.3. More concretely, the
transition probability F( yt y0

∣∣
t t0

) is given by F( yt y0
∣∣

t t0
) =F (yt , y0; 0) using the functionF (yt , y0; λ)

defined by Eq. (53), whose functional integral is carried out for any λ in Sec. 4.3.
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our results in Sec. 3 by taking v = 0, i.e. in the equilibrium case. In this general-
ization, we determine the work to sustain the nonequilibrium steady state in the
Onsager-Machlup theory, and also give a direct connection between the entropy
production rate in the Onsager-Machlup theory and the heat discussed in Refs. 39
and 40.

3. ONSAGER-MACHLUP THEORY FOR NONEQUILIBRIUM

STEADY STATES

In the generalized Onsager-Machlup theory, the Lagrangian L (v)(ẏs, ys) can
still be written in the form

L (v)(ẏs, ys) = − 1

2kB

[

(v)(ẏs) + �(ys) − Ṡ (v)(ẏs, ys)

]
(18)

where kB is the Boltzmann constant, and 
(v)(ẏs), �(ys) and Ṡ (v)(ẏs, ys) are
defined by


(v)(ẏs) ≡ α

2T
(ẏs + v)2, (19)

�(ys) ≡ α

2T

( ys

τ

)2
, (20)

Ṡ (v)(ẏs, ys) ≡ − 1

T
κys(ẏs + v), (21)

respectively, with the temperature T ≡ (kBβ)−1. These functions 
(v)(ẏs) and
�(ys) are called dissipation functions, while we call Ṡ (v)(ẏs, ys) the entropy pro-
duction rate. In the next Secs. 3.1 and 3.2, we discuss the physical meaning of
these quantities, and justify their names.

3.1. Heat and Energy Balance Equations

Using the entropy production rate Ṡ (v)(ẏs, ys), we introduce the heat
Q(v)

t ({ys}) produced by the system in the time-interval [t0, t] as

Q(v)
t ({ys}) ≡ T

∫ t

t0

ds Ṡ (v)(ẏs, ys). (22)

On the other hand, the work W (v)
t ({ys}) done on the system to sustain it in a steady

state is given by

W (v)
t ({ys}) ≡

∫ t

t0

ds Ẇ (v)(ys). (23)
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with the work rate (10). The heat (22) and the work (23) are related by

Q(v)
t ({ys}) = W (v)

t ({ys}) − �U(yt , y0) (24)

with the internal (potential) energy difference

�U(yt , y0) ≡ U (yt ) − U (y0) (25)

at times t and t0. The relation (24) is nothing but the energy conservation law
satisfied also by fluctuating quantities. It may be noted that Eq. (24) is used as a
“definition” of heat in Refs. 39 and 40, while here it appears as a consequence of
our nonequilibrium Onsager-Machlup theory. In other words, our generalization
of the Onsager-Machlup theory gives a justification of the heat used in Refs. 39
and 40. For other attempts to justify the energy conservation law in stochastic
processes using a Langevin equation or a master equation, see Refs. 30 and 41.

3.2. Dissipation Functions and the Entropy Production

First, it follows from Eqs. (19) and (21) that


(−v)(−ẏs) = 
(v)(ẏs), (26)

Ṡ (−v)(−ẏs, ys) = −Ṡ (v)(ẏs, ys), (27)

implying that the dissipation function 
(v)(ẏs) [as well as �(ys) by Eq. (20)]
is invariant under the time-reversal changes ẏs → −ẏs and v → −v, while the
entropy production rate Ṡ (v)(ẏs, ys) is anti-symmetric under these changes. It is
also obvious from Eqs. (19) and (20) that


(v)(ẏs) ≥ 0, (28)

�(ys) ≥ 0, (29)

namely, that the dissipation functions are non-negative. One should also notice
that by the definitions (19) and (20) the dissipation functions 
(v)(ẏs) and �(ys)
are proportional to the friction constant α specifying a dissipative property of the
system.

Second, from Eqs. (5) and (9), the ensemble average 〈ys〉 of the particle
position ys satisfies

〈ẏs〉 = − 1

τ
〈ys〉 − v, (30)

with the time-derivative ẏs ≡ dys/ds of ys , leading to the solution for the average
position

〈ys〉 = −vτ + (〈y0〉 + vτ ) exp

(
− s − t0

τ

)
. (31)
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Using this average position 〈ys〉 and the average velocity 〈ẏs〉, it follows from Eqs.
(19), (20) and (30) that


(v)(〈ẏs〉) = �(〈ys〉). (32)

Namely, the two dissipation functions 
(v)(ẏs) and �(ys) have the same value for
〈ys〉 and 〈ẏs〉, although 
(v)(ẏs) is a function of ẏs and �(ys) is a function of ys .
Moreover, from Eqs. (19), (21), (28), (30) and (32) we derive

Ṡ (v)(〈ẏs〉, 〈ys〉) = 2
(v)(〈ẏs〉) = 2�(〈ys〉) ≥ 0, (33)

namely, the function 2
(v)(〈ẏs〉) [as well as 2�(〈ys〉)] gives the entropy produc-
tion rate Ṡ (v)(〈ẏs〉, 〈ys〉), justifying the name “dissipation function” for 
(v)(ẏs)
and �(ys). The inequality in (33) is the second law of thermodynamics in the
nonequilibrium steady state Onsager-Machlup theory.

3.3. Onsager’s Principle of Minimum Energy Dissipation

and the Most Probable Path

Equation (30) for the average 〈ys〉 of the particle position can be derived from
the variational principle


(v)(ẏs) + �(ys) − Ṡ (v)(ẏs, ys) = minimum, (34)

without using the Langevin equation (9). This can be proved by using that

(v)(ẏs) + �(ys) − Ṡ (v)(ẏs, ys) = −2kB L (v)(ẏs, ys) ≥ 0 and L (v)(〈ẏs〉, 〈ys〉) = 0,
so that the left-hand side of Eq. (34) takes its minimum value for ys = 〈ys〉, i.e.
for the average path, which is used in Eq. (33). Equation (34) is called Onsager’s
principle of minimum energy dissipation, and is proposed as a generalization of
the maximal entropy principle for equilibrium thermodynamics.(4,5,11–14,48)

Another result in the generalized Onsager-Machlup theory is that we can ob-
tain another variational principle to extract the special path {y∗

s }s∈[t0,t], the so-called
most probable path, which gives the most significant contribution in the transition
probability F( yt y0

∣∣
t t0

). By the expression (12) for the transition probability

F( yt y0
∣∣

t t0
), the most probable path {y∗

s }s∈[t0,t] is determined by the maximal con-

dition on
∫ t

t0
ds L (v)(ẏs, ys), in other words, the path {ys}s∈[t0,t] satisfying

∫ t

t0

ds
[

(v)(ẏs) + �(ys) − Ṡ (v)(ẏs, ys)

] = minimum, (35)

under fixed values of y0 and yt , using the expression (18) for the Lagrangian
function L (v)(ẏs, ys). The condition (35), or equivalently the maximal condition
for

∫ t
t0

ds L (v)(ẏs, ys) implies the variational principle δ
∫ t

t0
ds L (v)(ẏs, ys) = 0 for
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the path {ys}s∈[t0,t], leading to the Euler-Lagrange equation(49)

d

ds

∂L (v)(ẏ∗
s , y∗

s )

∂ ẏ∗
s

− ∂L (v)(ẏ∗
s , y∗

s )

∂y∗
s

= 0 (36)

for the most probable path {y∗
s }s∈[t0,t]. (The most probable path can also

be obtained and analyzed by the Hamilton-Jacobi equation.(18−20)) Inserting
Eq. (13) into Eq. (36) we obtain

d2 y∗
s

ds2
= y∗

s + vτ

τ 2
(37)

for our model. It is interesting to note that the ensemble average 〈ys〉 also sat-
isfies Eq. (37), because d2〈ys〉/ds2 = (〈ys〉 + vτ )/τ 2 from Eq. (30). In fact, the
most probable path {y∗

s }s∈[t0,t] with the conditions y∗
t0 = y0 and y∗

t = yt contains

a superposition of the forward average path ϒ
[+]
s ≡ A+ exp(−s/τ ) − vτ , like

the average path (31), and its backward average path ϒ
[−]
s ≡ A− exp(s/τ ) + vτ ,

namely

y∗
s = ϒ [+]

s + ϒ [−]
s + A0 (38)

where A± and A0(= −vτ ) are time-independent constants and are determined by
the conditions y∗

t0 = y0 and y∗
t = yt .5

We now discuss a relation of the Onsager-Machlup theory with Einstein’s
fluctuation formula. We note that

L (v)
(
ϒ̇ [+]

s , ϒ [+]
s

) = 0, (39)

L (v)
(
ϒ̇ [−]

s , ϒ [−]
s

) = 1

kB
Ṡ (v)

(
ϒ̇ [−]

s , ϒ [−]
s

)
(40)

with ϒ̇
[±]
s ≡ dϒ

[±]
s /ds. Here, we used the equation ±dϒ

[±]
s /ds = −ϒ

[±]
s /τ ∓ v.

Using the most probable path {y∗
s }s∈[t0,t] satisfying the conditions y∗

t0 = y0 and

y∗
t = yt , we can approximate the transition probability F( yt y0

∣∣
t t0

) as

F

(
yt

t

∣∣∣∣
y0

t0

)
≈ exp

[∫ t

t0

ds L (v)(ẏ∗
s , y∗

s )

]
, (41)

apart from a normalization factor. This is analogous to the classical approximation
for the wave function in the Feynman path-integral approach in quantum mechan-
ics. (50) It is meaningful to mention that in the case of relaxation to an equilibrium

5 More concretely, the solution of Eq. (37) under the conditions y∗
t0

= y0 and y∗
t = yt is given by the

case of λ = 0 for ỹ∗
s in Eq. (55) which will be discussed in Section 4.3 later.
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state (v = 0), Eq. (41) becomes

F

(
yt

t

∣∣∣∣
y0

t0

)∣∣∣∣
v=0

≈ exp

[
1

kB

∫ t

t0

ds Ṡ (v)
(
ϒ̇ [−]

s , ϒ [−]
s

)∣∣
v=0

]
, (42)

noting Eqs. (40) and L (v)(ẏ∗
s , y∗

s )|v=0 = L (v)(ϒ̇ [−]
s , ϒ

[−]
s )|v=0. (48) Here, we remark

that in Eq. (42) the transition probability F( yt y0
∣∣

t t0
)
∣∣
v=0

is expressed by the

time-reversed path {ϒ̇ [−]
s }s∈[t0,t] only. The quantity

∫ t
t0

ds Ṡ gives the entropy,
so that Eq. (42) is similar to Einstein’s fluctuation formula in equilibrium, i.e. for
v = 0. (51)

4. FLUCTUATION THEOREM FOR WORK

In the preceding Sec. 3, by generalizing the Onsager-Machlup theory to
nonequilibrium steady states, we discussed fluctuating quantities whose averages
give thermodynamic quantities, like work and heat, etc. Since these quantities
fluctuate, it is important to discuss nonequilibrium characteristics of their fluctu-
ations. In the remaining part of this paper, we discuss such characteristics using
distribution functions of work, heat, etc., and a functional integral technique. For
this discussion, generalized versions of the equilibrium detailed balance, which we
will call nonequilibrium detailed balance relations, play an important role, leading
to fluctuation theorems. Fluctuation theorems hold for nonequilibrium behavior
in the case of v 	= 0, so there is no counterpart to the contents of this paper in
Onsager and Machlup’s original papers where v = 0 always.

4.1. Nonequilibrium Detailed Balance Relation

The equilibrium detailed balance condition expresses a reversibility of the
transition probability between any two states in the equilibrium state, and is known
as a physical condition for the system to relax to an equilibrium state. (17,47) This
condition has to be modified for the nonequilibrium steady state, because the
system does not relax to an equilibrium state but is sustained in a nonequilibrium
state by an external force. This modification, or violation, of the equilibrium
detailed balance in the nonequilibrium steady state is expressed quantitatively for
work by

e−βW (v)
t ({ys })e

∫ t
t0

ds L (v)(ẏs ,ys ) feq (y0) = feq (yt ) e
∫ t

t0
ds L (−v)(−ẏs ,ys ) (43)

in our path-integral approach, which can be derived from Eqs. (13), (17) and (23).
We call Eq. (43) a nonequilibrium detailed balance relation for nonequilibrium



14 Taniguchi and Cohen

steady states in this paper.6 Equation (43) reduces to the equilibrium detailed
balance condition in the case v = 0, because from Eqs. (12), (43) andW (0)

t ({ys}) =
0, we can derive the well-known equilibrium detailed balance condition

F

(
yt

t

∣∣∣∣
y0

t0

)∣∣∣∣
v=0

feq (y0) = F

(
y0

t

∣∣∣∣
yt

t0

)∣∣∣∣
v=0

feq (yt ) (44)

for the transition probability F( yt y0
∣∣

t t0
) in equilibrium.

As discussed in Sec. 2, the term exp[
∫ t

t0
ds L (v)(ẏs, ys)] on the left-hand

side of Eq. (43) is the probability functional for the forward path {ys}s∈[t0,t].
On the other hand, the term exp[

∫ t
t0

ds L (−v)(−ẏs, ys)] on the right-hand side of
Eq. (43) is the probability functional of the time-reversed path. Therefore, Eq. (43)
means that we need to perform the work W (v)

t ({ys}) so that the particle, dragged
from an equilibrium state with the velocity v, can move along a path {ys}s∈[t0,t] and
return back to the equilibrium state along its time-reversed path with the reversed
dragging velocity −v. Such an additional work appears as a canonical distribution
type of barrier exp[−βW (v)

t ({ys})] for the transition probability on the left-hand
side of Eq. (43). It should be emphasized that Eq. (43) is satisfied not only for the
most probable path but for any path {ys}s∈[t0,t], which is crucial for the derivation
of the work fluctuation theorem as we will discuss in the next Sec. 4.2.

4.2. Work Fluctuation Theorem

Now, we discuss the distribution of work. For convenience, we consider the
dimensionless work βW (v)

t ({ys}) and the distribution Pw(W, t) of its value W ,
given by

Pw(W, t) =
〈〈
δ
(
W − βW (v)

t ({ys})
)〉〉

t
. (45)

Here, 〈〈· · ·〉〉t means a functional average over all possible paths {ys}s∈[t0,t], as well
as integrals over the initial and final points of the path:

〈〈Xt ({ys})〉〉t ≡
∫

dyt

∫ yt

y0

Dys

∫
dy0 e

∫ t
t0

ds L (v)(ẏs ,ys ) f (y0, t0) Xt ({ys}) (46)

6 An asymmetry in the nonequilibrium detailed balance relation appears to correspond to the asymmetry
noted by Bertini et al. (18,19) in the creation and decay of a fluctuation in a nonequilibrium steady
state. (In Refs. 18 and 19 such an asymmetry is called an Onsager-Machlup symmetry, and we will
discuss this point more in Eq. (108) in Sec. 8.) If so, this asymmetry was applied in Refs. 18 and
19 to exclusion and boundary driven zero range models, while here it applies to a stochastic model
using the Langevin, the Fokker-Planck, or the Onsager-Machlup approach.
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for any functional Xt ({ys}). It is convenient to express the work distribution
Pw(W, t) as a Fourier transform

Pw(W, t) = 1

2π

∫ +∞

−∞
dλ eiλWE (v)

w (iλ, t) (47)

using the function E (v)
w (λ, t) defined by

E (v)
w (λ, t) ≡

〈〈
e−λβW (v)

t ({ys })
〉〉

t
, (48)

which may be regarded as a generating functional of the dimensionless work. It
follows from Eqs. (46), (48), L (−v)(ẏs, ys) = L (v)(−ẏs,−ys) and W (−v)

t ({ys}) =
W (v)

t ({−ys}), that the function E (v)
w (λ, t) is invariant under the change v → −v,

namely

E (−v)
w (λ, t) = E (v)

w (λ, t), (49)

if the initial distribution f (y0, t0) is invariant under spatial reflection, namely
f (−y0, t0)|−v = f (y0, t0)|v . This is simply due to an invariance under space in-
version of our model.

In addition, as shown in Appendix B, the nonequilibrium detailed balance
relation (43) imposes the relation E (v)

w (λ, t) = E (−v)
w (1 − λ, t) on the function

E (v)
w (λ, t) if f (y0, t0) = feq (y0). Combination of this relation for E (v)

w (λ, t) with
Eq. (49) then leads to

E (v)
w (λ, t) = E (v)

w (1 − λ, t) (50)

for the equilibrium initial distribution f (y0, t0) = feq (y0), as a relation similar to
one discussed in Ref. 28. Equation (50) is equivalent to the relation

Pw(W, t)

Pw(−W, t)
= exp(W ). (51)

for the work distribution Pw(W, t), which is known as the transient fluctuation
theorem. (25,44,52)7 [See Appendix B for a derivation of Eq. (51) from Eq. (50).]

As shown in Eq. (51), the transient fluctuation theorem is satisfied for any
time as an identity, (53) but it requires that the system is in the equilibrium state
at the initial time t0. Therefore, one may ask what happens to the fluctuation
theorem if we choose a nonequilibrium steady state, or any other state, as the
initial condition. In the next Sec. 4.3, we calculate the work distribution function
Pw(W, t) explicitly by carrying out the functional integral on the right-hand side
of Eq. (45) via Eq. (46), in order to answer this question.

7 In this paper we call the transient fluctuation theorem as a fluctuation theorem with the equilibrium
state as an initial condition.
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4.3. Functional Integral Calculation of the Work

Distribution Function

To calculate the work distribution function Pw(W, t), we note first that the
function E (v)

w (λ, t), connected to Pw(W, t) by Eq. (47), can be rewritten as

E (v)
w (λ, t) =

∫
dyt

∫
dy0 F(yt , y0; λ) f (y0, t0) (52)

by Eqs. (46) and (48). Here, F(yt , y0; λ) is defined by

F(yt , y0; λ) ≡
∫ yt

y0

Dys exp

{∫ t

t0

ds
[
L (v)(ẏs, ys) − λβẆ (v)(ys)

]}
. (53)

Equation (53) may be regarded as a constrained transition probability for the
modified Lagrangian L (v)(ẏs, ys) − λẆ (v)(ys).8 Here, the v-dependence of the
function F(yt , y0; λ) has been suppressed, as it is in the rest of the paper.

To calculate the function F(yt , y0; λ), we introduce the solution ỹ∗
t of the

modified Euler-Lagrange equation for the modified Lagrangian L (v)(ẏs,ys) −
λẆ (v)(ys), namely

d

ds

∂L (v)( ˙̃y∗
s, ỹ∗

s)

∂ ˙̃y∗
s

− ∂L (v)( ˙̃y∗
s, ỹ∗

s)

∂ ỹ∗
s

+ λβ
∂Ẇ (v)(ỹ∗

s)

∂ ỹ∗
s

= 0 (54)

under the conditions ỹ∗
t = yt and (ỹ∗

0 ≡)ỹ∗
t0 = y0. By solving Eq. (54) we obtain

ỹ∗
s = −(1 − 2λ)vτ + A((1−2λ)v)

t−t0 (yt , y0) exp

(
− t − s

τ

)

+ A((1−2λ)v)
t−t0 (y0, yt ) exp

(
− s − t0

τ

)
(55)

where A(v)
t−t0 (yt , y0) is defined by

A(v)
t−t0 (yt , y0) ≡ (yt + vτ ) − (y0 + vτ )bt

1 − b2
t

. (56)

[See Appendix C for a derivation of Eq. (55).] The path {ỹ∗
s}s∈[t0,t] becomes the

most probable path {y∗
s }s∈[t0,t] in the case of λ = 0, when Eq. (54) is equivalent to

Eq. (36).

8 In Eq. (53) the dimensionless work rate is βẆ (v)(ys ), multiplied by the Lagrange multiplier λ.
Similarly, the third term on the right-hand side of Eq. (54) may be regarded as a term for the Lagrange
multiplier under the restriction of the delta function in Eq. (45).
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Using the solution ỹ∗
s of the modified Euler-Lagrange equation (55), we

obtain

F(yt , y0; λ) = e
∫ t

t0
ds[L (v)( ˙̃y∗

s ,ỹ
∗
s )−λβẆ (v)(ỹ∗

s )]
∫ z̃t

z̃0

Dz̃s e
∫ t

t0
ds L (0)(˙̃zs ,z̃s ) (57)

for the function F(yt , y0; λ). Here z̃s is introduced as

z̃s ≡ ys − ỹ∗
s, (58)

namely the deviation of ys from ỹ∗
s , satisfying the boundary conditions

z̃t = z̃0 = 0 (59)

because ỹ∗
0 = y0 and ỹ∗

t = yt , while ˙̃zs ≡ dz̃s/ds and z̃0 ≡ z̃t0 . [See Appendix C
for a derivation of Eq. (57).] For the functional integral for z̃s on the right-hand
side of Eq. (57) we obtain

∫ z̃t

z̃0

Dz̃s exp

[∫ t

t0

ds L (0)(˙̃zs, z̃s)

]
= 1√

4π DTt
, (60)

noting that the Lagrangian L (0)(˙̃zs, z̃s) on the left-hand side of Eq. (60) is for the
case of v = 0. [See Appendix E for a derivation of Eq. (60).] Inserting Eqs. (55)
and (60) into Eq. (57), the function F(yt , yt0 ; λ) can be represented as

F(yt , y0; λ) = 1√
4π DTt

exp

{
− [(yt + vτ ) − (y0 + vτ )bt ]

2

4DTt

+ λαβv (yt + y0)
1 − bt

1 + bt

− λ(1 − λ)αβv2

(
t − t0 − 2τ

1 − bt

1 + bt

)}
(61)

Using Eq. (52) and (61) and carrying out the integration over yt we obtain

E (v)
w (λ, t) = e−λ(1−λ)αβv�t

∫
dy0 f (y0, t0) eλαβv[y0− vτ

2 (1−bt )](1−bt ) (62)

where �t is defined by

�t ≡ v

{
t − t0 − τ

2
[4 − (1 − bt )

2]
1 − bt

1 + bt

}
. (63)

Equation (62) gives an explicit expression of the function E (v)
w (λ, t) for any initial

distribution f (y0, t0).
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Inserting Eq. (62) into Eq. (47), we obtain

Pw(W, t) = 1√
4παβv�t

∫
dy0 f (y0, t0)

× exp

{
−

{
W − αβv

[
�t − (1 − bt )

[
y0 − vτ

2 (1 − bt )
]]}2

4αβv�t

}

(64)

as a concrete form of the work distribution Pw(W, t) satisfied by any initial
distribution f (y0, t0). From Eq. (64), the asymptotic form of the work distribution
function Pw(W, t) is given by

Pw(W, t)
t→+∞∼ 1√

4παβv2t
exp

[
− (W − αβv2t)2

4αβv2t

]
(65)

for any initial condition, where we used the asymptotic relation �t
t→+∞∼ vt by

Eq. (63), and the normalization condition
∫

dy0 f (y0, t0) = 1. It follows from
Eq. (65) that the average and the variance of W diverge as t → +∞, but the ratio
Pw(W, t)/Pw(−W, t) does not diverge and is given by

lim
t→+∞

Pw(W, t)

Pw(−W, t)
= exp(W ). (66)

Therefore, this work fluctuation theorem is satisfied for any initial condition (in-
cluding the nonequilibrium steady state initial distribution) in the very long time
limit, while the transient fluctuation theorem (51) is satisfied only for the equilib-
rium initial distribution.

We remark that although the work fluctuation theorem looks identical to
those found in earlier papers, (26,27,39,40) the definition of the work differs here
from that used there. Here we consider the dimensionless quantity W for the work
W (v)

t ({ys}) by multiplying it with β [cf. Eq. (45)], while we used before the more
appropriate scaled quantity pw ≡ W/W t , where W t is an ensemble average of the
(dimensionless) work W at time t . As a consequence then, the average of pw is
equal to 1, which is not the case here, where one multiplies with β.

5. FLUCTUATION THEOREM FOR FRICTION

In Sec. 4, we emphasized a close relation between the nonequilibrium de-
tailed balance relation like Eq. (43) and the fluctuation theorem (51) for work.
To show the usefulness of such a relation we discuss in this section another type
of nonequilibrium detailed balance relation, and show that it leads to another
fluctuation theorem related to the energy loss by friction.
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We consider the rate of energy loss caused by the friction force −α ẏs in the
comoving frame. It is given by −α ẏsv, so the total energy loss R(v)

t by friction in
the time interval [t0, t] is

R(v)
t (yt , y0) =

∫ t

t0

ds (−α ẏs) v = −αv(yt − y0) (67)

using y0 ≡ yt0 . It may be noted that the energy loss R(v)
t (yt , y0) by friction is

determined by the particle positions at the times t0 and t only, different from
the work W (v)

t ({ys}), which is determined by the particle positions at all times
s ∈ [t0, t].

Our starting point to discuss the fluctuation theorem for friction is the relation

e−βR(v)
t (yt ,y0)e

∫ t
t0

ds L (v)(ẏs ,ys ) feq (y0) = feq (yt ) e
∫ t

t0
ds L (v)(−ẏs ,ys ) (68)

derived straight-forwardly from Eqs. (13), (17) and (67). It must be noted that there
is a difference between Eq. (68) and Eq. (43) in the change (or no change) of the
sign of the dragging velocity v in their time-reversed motion on their right-hand
sides. This difference leads to different fluctuation theorems as shown later in this
section. Noting this difference, Eq. (68) can be interpreted as that an energy loss
R(v)

t (yt , y0) by friction is required to move the particle from y0 to yt via the path
{ys}s∈[t0,t] and to return it back from yt to y0 via its reversed path without changing
the dragging velocity v. Using Eqs. (12) and (68) we obtain

e−βR(v)
t (yt ,y0) F

(
yt

t

∣∣∣∣
y0

t0

)
feq (y0) = F

(
y0

t

∣∣∣∣
yt

t0

)
feq (yt ), (69)

where we used F( y0 yt
∣∣

t t0
) = ∫ yt

y0
Dys exp[

∫ t
t0

ds L (v)(−ẏs, ys)], as shown by Eqs.

(A3) and (A4). (54) Equation (69) reduces to the equilibrium detailed balance (44) in
the case of v = 0 because ofR(0)

t (yt , y0) = 0. Therefore, Eq. (68) is another kind of
generalization of the equilibrium detailed balance condition to the nonequilibrium
steady state, like Eq. (43).

We now introduce the distribution function Pr (R, t) of value R of the dimen-
sionless energy loss βR(v)

t (yt , y0) by friction in the time-interval [t0, t] as

Pr (R, t) =
〈〈
δ
(

R − βR(v)
t (yt , y0)

)〉〉

t
(70)

Like for the work distribution function, we represent the distribution function of
energy loss by friction in the form

Pr (R, t) = 1

2π

∫ +∞

−∞
dλ eiλREr (iλ, t) (71)
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where Er (λ, t) is given by

Er (λ, t) ≡
〈〈
e−λβR(v)

t (yt ,y0)
〉〉

t
(72)

=
∫

dyt

∫
dy0 F

(
yt

t

∣∣∣∣
y0

t0

)
e−λβR(v)

t (yt ,y0) f (y0, t0) (73)

with Eqs. (12) and (46). Here, the v-dependence of the function Er (λ, t) for friction,
as well as a similar E-function for heat introduced later, has been suppressed. It
follows from Eqs. (69), (73) and R(v)

t (y0, yt ) = −R(v)
t (yt , y0) that

Er (1 − λ, t) = Er (λ, t) (74)

if f (y0, t0) = feq (y0). Or equivalently, for the distribution function Pr (R, t) of
the dimensionless energy loss by friction, using Eqs. (71) and (74) we obtain

Pr (R, t)

Pr (−R, t)
= exp(R) (75)

for the equilibrium initial condition. Equation (75) may be regarded as a transient
fluctuation theorem for friction which is an identity satisfied for any time t [cf.
Eq. (51)].

If one is interested in the derivation of a fluctuation theorem for more general
initial states than the equilibrium initial state, we can proceed as follows. Using
Eqs. (12), (46) and (70) we obtain

Pr (R, t) =
∫

dyt

∫
dy0 f (y0, t0) δ

(
R − βR(v)

t (yt , y0)
)

F

(
yt

t

∣∣∣∣
y0

t0

)

= 1√
4παβv2Tt

∫
dy0 f (y0, t0)

× exp

{
− [R − αβv(y0 + vτ ) (1 − bt )]

2

4αβv2Tt

}
(76)

for any initial distribution f (y0, t0), where we used Eqs. (15), (67) and
δ(R − βR(v)

t (yt , y0)) = δ(yt − y0 + R/(αβv))/(αβ|v|).
To get more concrete results, in the remaining part of this section we concen-

trate on the initial distribution

f (y0, t0) = feq (y0 + vτφ), (77)

for a constant parameter φ, giving, in particular, the equilibrium initial distribution
for φ = 0 and the non-equilibrium steady state initial distribution for φ = 1.
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Inserting Eq. (77) into Eq. (76) the distribution Pr (R, t) is given by

Pr (R, t) = 1√
4παβv2τ (1 − bt )

exp

{
−

[
R − αβv2τ (1 − φ) (1 − bt )

]2

4αβv2τ (1 − bt )

}

(78)

using Eq. (17). It follows from Eq. (78) that

Pr (R, t)

Pr (−R, t)
= exp[(1 − φ)R], (79)

which does not have the form of a fluctuation theorem for φ 	= 0. In other words,
the distribution function of energy loss by friction satisfies the transient fluctu-
ation theorem for φ = 0, but not the steady state fluctuation theorem using the
steady state initial condition (77) for φ = 1. Actually, for the initial condition of
a nonequilibrium steady state, i.e. if φ = 1, its distribution Pr (R, t) is Gaussian
from Eq. (78) with its peak at R = 0, therefore Pr (−R, t) = Pr (R, t) then at any
time.

6. EXTENDED FLUCTUATION THEOREM FOR HEAT

As the next topic of this paper, we consider the distribution function of heat,
which was defined in Sec. 3.1, but and we calculate it by carrying out a functional
integral. We also discuss a new simple derivation of its fluctuation theorem briefly
in the long time limit.

The distribution function of the dimensionless heat Q corresponding to
βQ(v)

t ({ys}) using Eq. (22) is given by

Pq (Q, t) =
〈〈
δ
(

Q − βQ(v)
t ({ys})

)〉〉

t
. (80)

The heat distribution function Pq (Q, t) can be calculated like in the distribution
function of work or energy loss by friction, namely by representing it as

Pq (Q, t) = 1

2π

∫ +∞

−∞
dλ eiλQEq (iλ, t) (81)

where Eq (λ, t) is given by

Eq (λ, t) ≡
〈〈
e−λβQ(v)

t ({ys })
〉〉

t
(82)

=
∫

dyt

∫
dy0 eλβU (yt )F(yt , y0; λ)e−λβU (y0) f (y0, t0) (83)

where we used Eqs. (24), (25), (46) and (53) to derive Eq. (83) from Eq. (82). It
may be meaningful to notice that from Eqs. (52) and (83) the function Eq (λ, t) for
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heat is different from the function E (v)
w (λ, t) for work by the factor exp{λβ[U (yt ) −

U (y0)]} only. Inserting Eq. (61) into Eq. (83) one obtains

Eq (λ, t) = 1√
1 − λ

(
1 − b2

t

) exp

[
−λ(1 − λ)αβv2

(
t − t0 − 2τ

1 − bt

1 + bt

)]

×
∫

dy0 f (y0, t0)

× exp

[
−βκ

2

λ(1 − λ)
(
1 − b2

t

)

1 − λ
(
1 − b2

t

)
(

y0 − vτ
1 − bt

1 + bt

)2
]

(84)

for any initial distribution f (y0, t0).
The calculation of the heat distribution function Pq (Q, t) from its Fourier

transformation like Eq (iλ, t) has already done in Ref. 40 in detail, for the initial
condition of the equilibrium or nonequilibrium steady state, and led to the ex-
tended fluctuation theorem for heat. (39,40) We do not repeat their calculations and
argument in this paper. Instead, in the remaining of this section we discuss the
heat distribution function and its fluctuation theorem by a less rigorous but much
simpler argument than in Ref. 40. This discussion is restricted to the case of the
long time limit, in which time-correlations of some quantities may be neglected.
This allows to simplify considerably the derivation of the relevant distribution
functions. The heat fluctuation theorem is also discussed in Refs. 55, 56 and 57.

We start our argument by assuming that the particle energy is canonical-like
distributed due to the presence of the fluid surrounding a Brownian particle, (39)

so that the distribution Pe(E) of the dimensionless energy E , i.e. the (potential)
energy times the inverse temperature β, is given by

Pe(E) ≈ θ (E) exp(−E), (85)

where θ (x) is the Heaviside function taking the value 1 for x > 0 and 0 for
x ≤ 0, and θ (E) in Eq. (85) guarantees that the energy E is positive. [Note that
on the right-hand side of Eq. (85) the normalization condition

∫
d E Pe(E) = 1

is still satisfied.] Now, we consider the distribution function P�e(�E, t) of the
dimensionless energy difference �E(= Et − E0) at the initial time t0 and the
final time t , which is given by

P�e(�E, t)
t→+∞∼

∫
d E0

∫
d Et Pe(E0)Pe(Et )δ(Et − E0 − �E), (86)

namely
∫

d E0 Pe(E0)Pe(E0 + �E), in the long-time limit. Here, we have assumed
that the energy E0 at the initial time t0 and the energy Et at the final time t are
uncorrelated in the long time limit t → +∞, so that the distribution function of
the energies E0 and Et is given by a multiplication of Pe(E0) (the initial energy
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probability distribution) and Pe(Et ) (the final energy probability distribution). The
distribution function P�e(�E, t) is given by the integral of such a distribution
function of the energies E0 and Et over all possible values of E0 and Et under the
constraint �E = Et − E0, therefore by Eq. (86). Inserting Eq. (85) into Eq. (86)
we obtain

P�e(�E, t)
t→+∞∼ 1

2
exp(−|�E |), (87)

meaning that the distribution function P�e(�E, t) of the energy difference
�E decays exponentially. [Note again that the right-hand side of (87) satisfies
the normalization condition

∫
d�E P�e(�E, t) = 1.] The argument leading to

Eq. (87) is also in Ref. 39.
On the other hand, we have already calculated the distribution function

Pw(W, t) of work W in Sec. 4.3 and from Eq. (65) we derive

Pw(W, t)
t→+∞∼ 1√

4πW t

exp

[
− (W − W t )2

4W t

]
(88)

for any initial distribution. Here, W t is the average of the (dimensionless) work W

for the distribution Pw(W, t) and given by W t
t→+∞∼ αβv2t from Eq. (65) in the

long time limit.
By Eq. (24), the heat Q is given by Q = W − �E using the work W and

energy difference �E , and its distribution function Pq (Q, t) should be represented
by

Pq (Q, t)
t→+∞∼

∫
dW

∫
d�E Pw(W, t)P�e(�E, t)δ(W − �E − Q), (89)

namely
∫

dW Pw(W, t)P�e(W − Q, t), in the long time limit. Here, we used a
similar argument as in Eq. (86) in order to justify Eq. (89), namely, Eq. (89) is the
integral of the multiplication of the work distribution Pw(W, t) and the energy-
difference distribution function P�e(�E, t) over all possible values of W and �E
under the restriction Q = W − �E for a given �E . Non-correlation of the work
and the energy difference in the long time limit, which is assumed in Eq. (89), may
be justified by the fact that the work depends on the particle positions over the
entire time interval [t0, t] by Eqs. (10) and (23) (in which the effects at the times
t0 and t are negligible in the long time limit) while the energy difference depends
exclusively on the particle positions at the times t0 and t only. Inserting Eq. (87)
and (88) into Eq. (89) we obtain

Pq (Q, t)
t→+∞∼ 1

4

[
e−Q+2W t erfc

(
− Q − 3W t

2
√

W t

)
+ eQerfc

(
Q + W t

2
√

W t

)]

(90)
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with the complimentary error function erfc(x) defined by erfc(x) ≡
(2/

√
π )

∫ +∞
x dz exp(−z2), satisfying the inequality 0 < erfc(x) < 2. One may

notice that the average work W t is equal to the average heat in the case of the
nonequilibrium steady state initial condition f (y0, t0) = fss(y0), because of the
energy conservation law (24) and that the average of the internal energy difference
(25) is zero in this case. Equation (90) gives the asymptotic form of the heat
distribution function. The exponential factors exp(±Q) in Eq. (90) dominate the
tails of the heat distribution function Pq (Q, t). (40)

Now, in order to exhibit the strong deviation of the heat fluctuation theorem
from the work fluctuation theorem we introduce the scaled variables pw and pq of
W and Q, respectively, with W t as pw ≡ W/W t and pq ≡ Q/W t . (39,40,45) Then
using these variables we also introduce the fluctuation functions Gw(pw, t) and
Gq (pq , t) defined by

Gw(pw, t) ≡ 1

W t

ln
Pw(pwW t , t)

Pw(−pwW t , t)
, (91)

Gq (pq , t) ≡ 1

W t

ln
Pq (pq W t , t)

Pq (−pq W t , t)
, (92)

respectively, for the work distribution function Pw(W, t) and the heat distribu-
tion function Pq (Q, t). By Eq. (88) the function Gw(pw, t) is given simply by

Gw(pw, t)
t→+∞∼ pw in the long time limit, characterizing the work fluctuation

theorem in a proper way to compare it with the heat fluctuation theorem char-
acterized by the function Gq (pq , t). In Fig. 2. the functions Gw(p, t) (dashed
line) and Gq (p, t) (solid line) are plotted as functions of p (= pw or pq ) using
Eqs. (88) and (90) in the case of W t = 70. In this figure we plotted only the pos-
itive regions of W and Q, because their values in the negative region are simply
given by Gw(−p, t) = −Gw(p, t) and Gq (−p, t) = −Gq (p, t). It is clear from
Fig. 2 that the values of the functions Gw(p, t) and Gq (p, t) will coincide with
each other for small |p| for W t → +∞, i.e. t → +∞, meaning that the heat fluc-
tuation theorem coincides with the work fluctuation theorem in this region. The
difference between the heat and work fluctuation theorems appears in the large
values of the argument, where the function Gw(p, t) remains p while the function
Gq (p, t) takes the constant value 2 for p > 3 in the long time limit. For further
details, we refer to Ref. 40.

7. INERTIAL EFFECTS

So far, we have restricted our discussions to the over-damped case and have
neglected inertial effects. A generalization of our discussions to include inertial
effects is almost straightforward. One of the features caused by introducing inertia
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Fig. 2. Comparison of the work fluctuation theorem and the heat fluctuation theorem by plotting
the function Gw(p, t) for the work distribution and the function Gq (p, t) for the heat distribution
as functions of a scaled p (= W/W t or Q/W t ) in the long time limit t → +∞. Here, we used the
asymptotic forms (88) and (90) of the work distribution function and the heat distribution function,
respectively, in the case of W t = 70. In the small p region (0 ≤ p ≤ 1), the values of the two functions
Gw(p, t) and Gq (p, t) appear to be consistent with Gw(p, t) = Gq (p, t), while Gw(p, t) is p and
Gq (p, t) is 2 in the large p region (3 ≤ p ≤ +∞) in the long time limit.

is a kinetic term in the equilibrium and nonequilibrium steady state distribution
functions. This kinetic term depends on the frame one uses, namely the comoving
frame or the laboratory frame, respectively. The inertial force, like a d’Alembert
force, also appears as an inertial effect. In this section we discuss briefly these
effects beyond the over-damped case. We restrict our arguments in this section
to nonequilibrium detailed balances and the corresponding transient fluctuation
theorems only for the equilibrium initial state. We omit then the calculations of
the functional integrals for the fluctuation theorems for arbitrary initial conditions,
since they involve very cumbersome calculations, which we reserve for a future
publication.

The Langevin equation including inertia is expressed as Eq. (4) in the labora-
tory frame. Like in the over-damped case, we can convert Eq. (4) for the laboratory
frame to

m
d2 yt

dt2
= −α

dyt

dt
− κ (yt + vτ ) + ζt (93)

for the comoving frame by Eq. (8). Equation (93) reduces to Eq. (9) for the
over-damped case when md2 yt/dt2 = 0.
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We introduce a canonical-like distribution function as

f (ϑ)
eq (ẏ, y) ≡ �(ϑ)−1 exp [−βH (ẏ + ϑv, y)] (94)

where ẏ is the time-derivative of y and H (ẏ, y) is defined by

H (ẏ, y) ≡ mẏ2/2 + κy2/2, (95)

and �(ϑ) is the normalization constant for the distribution function f (ϑ)
eq (ẏ, y). It

is important to note that the particle velocity depends on the frame, and is given
by ẏ for the comoving frame and by ẋ(= ẏ + v) for the laboratory frame. For that
reason, the canonical distribution function f (ϑ)

eq (ẏ, y), including the kinetic energy,

depends on the frame, so that f (0)
eq (ẏ, y) for ϑ = 0 refers to the comoving frame

and f (1)
eq (ẏ, y) for ϑ = 1 refers to the laboratory frame.
In a way similar to the over-damped case, the functional probability density

for the path {ys}s∈[t0,t] is given by exp[
∫ t

t0
ds L (v)(ÿs, ẏs, ys)] with the Lagrangian

function

L (v)(ÿs, ẏs, ys) ≡ − 1

4D

(
ẏs + 1

τ
ys + v + m

α
ÿs

)2

(96)

using ÿs ≡ d2 ys/ds2. The Lagrangian function (96) becomes the Lagrangian func-
tion (13) in the over-damped case, where mÿs = 0. Using Eqs. (94) and (96) we
obtain

e−β
∫ t

t0
ds �±(ÿs ,ẏs ,ys ;ϑ)ve

∫ t
t0

ds L (v)(ÿs ,ẏs ,ys ) f (ϑ)
eq (ẏ0, y0)

= f (ϑ)
eq (ẏt , yt ) e

∫ t
t0

ds L (±v)(ÿs ,−ẏs ,ys ) (97)

where ẏ0 = ẏt0 , and �±(ÿs, ẏs, ys ; ϑ) is a modified “force” defined by

�±(ÿs, ẏs, ys ; ϑ) ≡ −κys
1 ∓ 1

2
− α ẏs

1 ± 1

2
− mÿs

(
1 ∓ 1

2
− ϑ

)
. (98)

Equation (97) may be regarded as a nonequilibrium detailed balance relation for
the case of a potential force, friction and inertia. [See Appendix D for a derivation
of Eq. (97).] Moreover, the signs ± in Eq. (97) correspond to the case of work (−1),
discussed in Sec. 4 and that of energy loss by friction (+1), respectively, discussed
in Sec. 5, and are due to the ±v signs of the Lagrangian L (±v)(ÿs,−ẏs, ys) on the
right-hand side of Eq. (97). It should be noted that the first, second and third terms
on the right-hand side of Eq. (98) are regarded as the harmonic force, the friction
force, and the inertial (d’Alembert-like) force, respectively.
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Table I. Four kinds of fluctuation theorems corresponding to four forces for

the case including inertial effects.

Frame (ϑ) ±v Force � Fluctuation Theorem

Comoving (0) −v �−(ÿ, ẏ, y; 0) = −κy − mÿ
P (0)

− (W,t)

P (0)
− (−W,t)

= exp(W)

Comoving (0) +v �+(ÿ, ẏ, y; 0) = −α ẏ
P (0)

+ (W,t)

P (0)
+ (−W,t)

= exp(W)

Laboratory (1) −v �−(ÿ, ẏ, y; 1) = −κy
P (1)

− (W,t)

P (1)
− (−W,t)

= exp(W)

Laboratory (1) +v �+(ÿ, ẏ, y; 1) = −α ẏ + mÿ
P (1)

+ (W,t)

P̃ (1)
+ (−W,t)

= exp(W)

Note. Here, ϑ = 0 (ϑ = 1) is for the case of the comoving frame (the laboratory frame),
and ±v is the velocity appearing in the Lagrangian function L (±v)(ÿs , −ẏs , ys ) on the
right-hand side of the nonequilibrium detailed balance relation (97).

Now, we introduce the dimensionless modified “work” rate β�±(ÿ, ẏ, y; ϑ)v
and its work distribution function P (ϑ)

± (W, t) as

P (ϑ)
± (W, t) =

〈〈
δ

(
W − β

∫ t

t0

ds �±(ÿ, ẏ, y; ϑ)v

)〉〉
(99)

where 〈〈· · ·〉〉 is the functional average in the inertial case, like the one given by
Eq. (46). Here, we remark that W in Eq. (99) differs from the work W (v)

t ({ys})
defined by Eq. (23). In a way similar to the derivation of Eqs. (51) and (75) in the
over-damped case, it follows that the distribution function P (ϑ)

± (W, t) satisfies the
transient fluctuation theorem

P (ϑ)
± (W, t)

P̃ (ϑ)
± (−W, t)

= exp(W) (100)

under the condition that the initial distribution at time t0 is given by the f (ϑ)
eq (ẏ, y).

Here, the distribution P̃ (ϑ)
± (W, t) is defined by

P̃ (ϑ)
± (W, t) ≡ P ((−1)

1+1
2 ϑ)

± (W, t), (101)

and is simply given by

P̃ (0)
+ (W, t) = P (0)

+ (W, t), (102)

P̃ (ϑ)
− (W, t) = P (ϑ)

− (W, t) (103)

in these special cases. Furthermore, in order to derive Eq. (100) we also
used the relations L (v)(ÿs, ẏs, ys) = L (−v)(−ÿs,−ẏs,−ys), �±(ÿs, ẏs, ys ; ϑ) =
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−�±(−ÿs,−ẏs,−ys ; ϑ) and

�±(ÿs, ẏs, ys ; ϑ)v = −�±(ÿs,−ẏs, ys ; (−1)
1±1

2 ϑ)(±v). (104)

It may be noted that the two terms −α ẏ and mÿ for the force �+(ÿs, ẏs, ys ; 1)
have different time-reversal properties than the other forces �+(ÿs, ẏs, ys ; 0) and
�−(ÿs, ẏs, ys ; ϑ).

From Eq. (100) we derived four different fluctuation theorems corresponding
to the cases (ϑ,±v) = (0,−v), (1,−v), (0, v), and (1, v), where ±v is the velocity
appearing in the Lagrangian function L (±v)(ÿs,−ẏs, ys) on the right-hand side
of the nonequilibrium detailed balance relation (97). We summarize these four
fluctuation theorems in Table 1. In the last line of this table, the appearance of
the function P̃ (1)

+ (−W, t) for the case of (ϑ,±v) = (1, v) is due to the different
behavior with respect to time-reversal of the two terms −α ẏ and mÿ composing
the modified force �+(ÿs, ẏs, ys ; 1), while in all the other cases in Table 1 the
modified forces have a unique behavior under time-reversal.

8. CONCLUSIONS AND REMARKS

In this paper we discussed a generalization of Onsager-Machlup’s fluctuation
theory to nonequilibrium steady states and fluctuation theorems based on nonequi-
librium detailed balance relations. To that end, we used a model which consists
of a Brownian particle confined by a harmonic potential which is dragged with a
constant velocity v through a heat reservoir. Like in the Onsager-Machlup theory
this model is described by a Langevin equation, which is a simple and exactly-
solvable nonequilibrium steady state model. Our basic analytical approach is a
functional integral technique, which was used in Onsager and Machlup’s original
work and is effective to discuss fluctuation theorems treating quantities expressed
as functionals, for example, work and heat.

First, we gave an expression of the transition probability in terms of a La-
grangian function which can be written as a sum of an entropy production rate
and two dissipation functions. There is a difference, though with the similar result
of Onsager and Machlup’s original papers, (11,12) in that now the entropy pro-
duction rate and one of the two dissipation functions–and consequently also the
Lagrangian function–depend on the dragging velocity v leading to nonequilib-
rium steady state effects. From this property of the Lagrangian function, we con-
structed a nonequilibrium steady state thermodynamics by obtaining the second
law of thermodynamics and the energy conservation law, which involves contri-
butions of fluctuating heat, work and an internal potential energy difference. We
also discussed Onsager’s principle of minimum energy dissipation and the most
probable path, approximating the transition probability of the particle position.
This approach is different from another attempt for an Onsager-Machlup theory
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for nonequilibrium steady states, (18,19) where a nonlinear diffusion equation is ap-
plied to models like an exclusion model and a boundary driven zero range model.
Instead, we use a stochastic model described by a Langevin equation, so that our
results automatically include those of Onsager and Machlup’s original works by
taking a specific equilibrium value, v = 0, for the nonequilibrium parameter v,
and map Onsager and Machlup’s variables α and α̇ in Refs. 11 and 12 to our
variables x and ẋ , respectively.

Second, we derived nonequilibrium detailed balance relations from the La-
grangian function to obtain not only the well-known fluctuation theorem for work
but also another fluctuation theorem for energy loss by friction. We also indi-
cated the derivation of the extended fluctuation theorem for heat by carrying out
explicitly the relevant functional integral and then using Refs. 39 and 40. In addi-
tion, we gave a simple argument for the heat fluctuation theorem in the long time
limit. Finally, we discussed briefly the effects of inertia, and obtained four new
different fluctuation theorems related to a potential force, a friction force and a
d’Alembert-like (or inertial) force, both for the comoving or the laboratory frame.

In the remaining of this section, we make some remarks on the contents in
the main text of this paper.

1) In this paper, we have emphasized a close connection between nonequi-
librium detailed balance relations and fluctuation theorems, using a functional
integral approach. It may be noted that in some earlier works concepts of detailed
balance have been mentioned for formal derivations of fluctuation theorems in
various different contexts, implicitly or explicitly.(24.27–30,58) However, we should
keep in mind that a generalization of the equilibrium detailed balance to nonequi-
librium states is not unique, as shown in this paper [cf. Eqs. (43) and (68)]. As
a remark related to this point, we should notice that even if the equilibrium de-
tailed balance condition is violated, but another detailed balance condition for the
nonequilibrium steady state still holds, namely, using the nonequilibrium steady
state distribution fss(y), we obtain for the over-damped case:

e
∫ t

t0
ds L (v)(ẏs ,ys ) fss(y0) = fss(yt ) e

∫ t
t0

ds L (v)(−ẏs ,ys )
, (105)

by Eqs. (13), (16) and (17), or equivalently F( yt y0
∣∣

t t0
) fss(y0) = F( y0 yt

∣∣
t t0

) fss(yt ).
Here, it is essential to note that on the right-hand side of Eq. (105) we do not change
the sign of the dragging velocity v although we change the sign of the particle
velocity ẏs in the comoving frame. We emphasize that here, there are no additional
multiplying factors like exp[−βW (v)

t ({ys})] as in Eq. (43) or exp[−βR(v)
t (yt , y0)]

as in Eq. (68). As a consequence we have been unable to derive fluctuation theorems
from Eq. (105). Since we chose the equilibrium state as the reference state for
the detailed balance in this paper, our interest was mainly the work to maintain
the system in a nonequilibrium steady state, i.e. the work necessary to keep the
system from going to the equilibrium state. In fact, we note that the reference
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state is arbitrary, for example, if we are interested in the work to go from one
nonequilibrium state to another nonequilibrium state. In general, the modification
of the detailed balance relation based on an arbitrary reference distribution function
fref (y) can be expressed as

e−βYt ({ys })e
∫ t

t0
ds L (v)(ẏs ,ys ) fref (y0) = fref (yt ) e

∫ t
t0

ds L (−v)(−ẏs ,ys ) (106)

where Yt ({ys}) is the functional defined by

Yt ({ys}) ≡ Q(v)
t ({ys}) + β−1 ln

fref (y0)

fref (yt )
. (107)

Choosing fref (y) = feq (y), Eq. (106) leads to Eq. (43). In a similar way we can
also obtain a generalization of Eq. (68) for an arbitrary reference distribution
function fref (y). Eq. (106) can lead formally to a fluctuation theorem for Yt ({ys}).
However, except when Yt ({ys}) equals work (in the case of fref (y) = feq (y)) and
heat (in the case of fref (y) = const), the physical meanings of Yt ({ys}) and the
fluctuation theorem for Yt ({ys}), which follows from Eq. (106), are purely formal
in general without a known physical content. An analogous quantity to Yt ({ys})
can be found in Ref. 52 for a thermostatted system with deterministic dynamics.

2) From Eq. (105) we derive
∫ t

t0

ds L (v)(ẏs, ys) + S̃ss(y0)/kB =
∫ t

t0

ds L (v)(−ẏs, ys) + S̃ss(yt )/kB (108)

where S̃ss(y) is defined by S̃ss(y) ≡ kB ln fss(y). An identity like Eq. (108) is
called an Onsager-Machlup symmetry, (18,19) in nonequilibrium steady states. Us-
ing Eq. (108) we can also obtain an expression like

exp
[∫ t

t0
ds L (v)(ẏs, ys)

]

exp
[∫ t

t0
ds L (v)(−ẏs, ys)

] = exp
[
β Q̃ss(t, t0)

]
(109)

with Q̃ss(t, t0) ≡ T [S̃ss(yt ) − S̃ss(y0)]. On the other hand, it can be shown from

Eqs. (17), (24) and (43) [or from Eq. (106) for fref (y) = const] that

exp
[∫ t

t0
ds L (v)(ẏs, ys)

]

exp
[∫ t

t0
ds L (−v)(−ẏs, ys)

] = exp
[
βQ(v)

t ({ys})
]

(110)

using the heat Q(v)
t ({ys}) of Eq. (22). Note that Eq. (110) is consistent with the

heat Q(v)
t ({ys}) appearing in our energy conservation law (24), in contrast to Eq.

(109) in which the quantity Q̃ss(t, t0) does not have such a correspondence to
the heat. Thus we will restrict ourselves in the following to Eq. (110). As we
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discussed in Sec. 2, the term exp[
∫ t

t0
ds L (v)(ẏs, ys)] appearing in the numerator

on the left-hand side of Eq. (110) is the probability functional of the forward
path {ys}s∈[t0,t]. On the other hand, the denominator on the left-hand side of Eq.
(110) is the probability functional of the corresponding time-reversed path with
the dragging velocity −v. Therefore, Eq. (110) implies that the logarithm of the
ratio of such forward and backward probability functionals is given by the heat
multiplied by the inverse temperature. In this sense it is tempting to claim Eq. (110)
as a relation leading to a fluctuation theorem. (59,60,61) However, it is important to
distinguish Eq. (110) from the fluctuation theorems discussed in the main text of
this paper. First of all, although it is related to the heat, Eq. (110) has a form rather
close to a relation leading to fluctuation theorems like Eqs. (51) and (75), which
are different from the extended form for the heat fluctuation theorem discussed in
Sec. 6. Similarly, although one may regard Eq. (110) as a nonequilibrium detailed
balance relation for heat, a derivation of the extended fluctuation theorem for heat
from a nonequilibrium detailed balance relation remains an open problem. We
should also notice that no initial condition dependence appears in Eq. (110), so
that we cannot discuss directly, for example, a difference between the transient
fluctuation theorem and the steady state fluctuation theorem from Eq. (110).

3) Although nonequilibrium detailed balance relations, like Eq. (43), (68) or
(106), play an essential role to derive fluctuation theorems, it is important to note
that some properties of the fluctuation theorem cannot be discussed by it. Basically,
the nonequilibrium detailed balance relation can lead directly to transient fluctua-
tion theorems, which are identically satisfied for any time, (53) but this relation does
not say what happens to fluctuation theorems if we change the initial condition
(e.g. the equilibrium distribution) to another (e.g. the nonequilibrium steady state
discussed in the steady state fluctuation theorem). The transient fluctuation theo-
rem can be different from the steady state fluctuation theorem for some quantities,
even in the long time limit. As an example for such a difference, we showed in this
paper that the energy loss by friction satisfies the transient fluctuation theorem but
does not satisfy the steady state fluctuation theorem.

The transient fluctuation theorems like Eq. (51) for work and Eq. (75) for
friction are correct as a general identity satisfied for any time but only for an
equilibrium initial condition. They appear as a restatement of a nonequilibrium
detailed balance relation. On the contrary, the (asymptotic) fluctuation theorems
like Eq. (66) for work, known as the steady state fluctuation theorem, which is
correct for any initial condition but only in the long time limit, is not a simple con-
sequence of a nonequilibrium detailed balance relation (although such a relation
may be necessary to show its validity): it depends on the properties of convergence
of the initial distribution to a unique asymptotic distribution describing a nonequi-
librium steady state, namely on a stability of dynamical systems. This point is
expressed as the “chaotic hypothesis” in the derivation of the fluctuation theorem
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for deterministic systems. (26) In this sense, asymptotic fluctuation theorems have
more content than transient fluctuation theorems.

We have discussed an initial condition dependence of fluctuation theorems
by carrying out functional integrals to obtain distribution functions explicitly, and
showed that the work distribution function has an asymptotic form satisfying the
work fluctuation theorem, independent of the initial distribution, while the friction-
loss distribution function does depend on the initial condition even in the long time
limit. This difference between the work and the friction-loss might come from the
fact that the work is given by a time-integral of the particle position so that its
contribution near the initial time can be neglected in the long time limit, while the
energy loss by friction is given by the particle position at the initial and final times
only. A systematic way to investigate whether a fluctuation theorem is satisfied for
any initial condition without calculating a distribution function, remains an open
problem.9

4) We note that the exactly solvable linear and Gaussian model we consider is
special and probably not typical for nonlinear models, as considered for instance
for the as yet unsolved nonlinear problem treated in Ref. 62. However, one may
notice that it is possible to introduce the Onsager-Machlup Lagrangian function [cf.
Eq. (13)] for dynamics described by nonlinear Langevin equations. (16,17) We intend
to express the Lagrangian function for nonlinear cases in terms of two dissipation
function and the entropy production rate [cf. Eq. (18)], and then to introduce
thermodynamical quantities like heat and work, etc., which should be vital to
discuss the nonequilibrium detailed balance relations and fluctuation theorems for
nonlinear dynamics. See, also Refs. 13–17 for nonlinear generalizations of the
Onsager-Machlup theory.

5) A connection of the results in Refs. 18, 19, 22 and 23 with those in this
paper appears to be mainly in that both generalize Onsager and Machlup’s classical
work on fluctuations around equilibrium. For example, Refs. 18 and 19 propose
an Onsager-Machlup theory for a general class of stochastic models with a macro-
scopic description in terms of a nonlinear diffusion equation. In this theory they
suggest a possible way to derive rigorously an Onsager-Machlup-like theory for
this class of systems. In some explicitly solvable cases this theory can be carried
through. Also a generalization of a fluctuation theorem is proposed for dimen-

9 It should be noted that the extended heat fluctuation theorem may also depend on the initial condition.
[Note that in our simple argument for heat [based on Eq. (89), etc.] in the second half of Sec. 6
we assumed a canonical-like distribution as the initial distribution.] Actually, if we could choose
the initial distribution f (y0, t0) as a constant then we can show that the heat satisfies the fluctuation
theorem Pq (Q, t)/Pq (−Q, t) = exp(Q) for any time, which is derived from Eq. (106) for the case
that fref (y0) is constant, or from Eq. (84) leading then to the relation Eq (λ, t) = Eq (1 − λ, t) in
this case. We emphasize that this fluctuation theorem for heat differs from the extended fluctuation
theorem (cf. Fig. 2).
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sions greater than 1. (20) They appear to discuss, however, different generalizations
than we do in our linear case. The physical connection between these different
generalizations is at present unclear, but if made, could lead to a more unified
theory of fluctuations outside those in thermal equilibrium.

6) Finally we note that the analogy of the Brownian particle case, discussed
here, and the electric circuit case should persist not only in the over-damped
case (as shown in Ref. 45) but also in the case including inertia. In that case,
one has to add the self-induction L0 of the electric circuit, as the corresponding
quantity of the mass m of the Brownian particle. This will add the correspondence
of m and L0 to Table I in Ref. 45. Then, the fluctuation theorems in Table I
in Sec. 7 of this paper can, by using the extended analogy described above,
also be used for electric circuits, and might be experimentally accessible (cf.
Ref. 35).

APPENDIX A: TRANSITION PROBABILITY USING A FUNCTIONAL

INTEGRAL TECHNIQUE

In this Appendix, we outline a derivation of the transition probability (12) for
the stochastic process described by the Langevin equation (9).

First, we translate the Langevin equation (9) into the corresponding
Fokker-Planck equation. This can be done using the Kramers-Moyal expansion
technique, (17,47) which leads to the Fokker-Planck equation

∂ f (y, t)

∂t
= L̂ f (y, t) (A1)

for the distribution function f (y, t) of the particle position y at time t . Here, L̂ is
the Fokker-Planck operator defined by

L̂ ≡ ∂

∂y

(
y + vτ

τ
+ D

∂

∂y

)
(A2)

with D ≡ 1/(αβ).

The transition probability F( y y′∣∣
t + �t t ) from y′ at time t to y at time t + �t

is given by

F

(
y

t + �t

∣∣∣∣
y′

t

)

= eL̂�tδ(y − y′)

= [1 + L̂�t + O(�t2)]δ
(
y − y′)

=
(

1 + �t
∂

∂y

y′ + vτ

τ
+ D�t

∂2

∂y2

)
δ(y − y′) + O(�t2)
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= 1

2π

∫ +∞

−∞
dλ

(
1 + �t

y′ + vτ

τ

∂

∂y
+ D�t

∂2

∂y2

)
exp[iλ(y − y′)]

+O(�t2)

= 1

2π

∫ +∞

−∞
dλ exp

[
−D�tλ2 + i�t

(
y − y′

�t
+ y′ + vτ

τ

)
λ

]

+O(�t2)

= 1√
4π D�t

exp

[
− 1

4D

(
y − y′

�t
+ y′ + vτ

τ

)2

�t

]
+ O(�t2) (A3)

where we used yδ (y − y′) = y′δ (y − y′). On the other hand, using the Chapman-
Kolmogorov equation,(47) the transition probability for a finite time interval t − t0
is expressed as

F

(
yt

t

∣∣∣∣
y0

t0

)
= lim

N→+∞

∫
dyN−1

∫
dyN−2 · · ·

∫
dy1

×F

(
yt

t

∣∣∣∣
yN−1

tN−1

)
F

(
yN−1

tN−1

∣∣∣∣
yN−2

tN−2

)
· · · F

(
y1

t1

∣∣∣∣
y0

t0

)

(A4)

with tn ≡ t0 + n�tN , n = 1, 2, · · · , N , �tN ≡ (t − t0)/N , tN = t . Inserting the
expression (A3) for the transition probability in a short time interval �t = �tN

into Eq. (A4) we obtain Eq. (12) with the functional integral (14).

APPENDIX B: FLUCTUATION THEOREM FOR WORK

In this Appendix, we show the relation E (v)
w (λ, t) = E (−v)

w (1 − λ, t), which
with Eq. (49) leads to Eq. (50). We also give a derivation of Eq. (51) from
Eq. (50).

From Eq. (48) with the functional average (46) we derive

E (v)
w (λ, t) =

∫
dyt

∫ yt

y0

Dys

∫
dy0 e

∫ t
t0

ds L (v)(ẏs ,ys )

× f (y0, t0) e−λβW (v)
t ({ys })

=
∫

dyt

∫ yt

y0

Dys

∫
dy0 feq (yt ) e

∫ t
t0

ds L (−v)(−ẏs ,ys )

× eβW (v)
t ({ys }) 1

feq (y0)
f (y0, t0) e−λβW (v)

t ({ys })
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=
∫

dy0

∫ yt

y0

Dys

∫
dyt e

∫ t
t0

ds L (−v)(−ẏs ,ys ) feq (yt )

× e−(1−λ)βW (−v)
t ({ys }) (B.1)

=
∫

dyt

∫ yt

y0

Dys

∫
dy0 e

∫ t
t0

ds L (−v)(ẏs ,ys ) feq (y0)

× e−(1−λ)βW (−v)
t ({ys }) (B.2)

= E (−v)
w (1 − λ, t) (B.3)

where we used Eqs. (43) and W (−v)
t ({ys}) = −W (v)

t ({ys}) and the assumption
f (y0, t0) = feq (y0). Here, in the transformation from Eq. (B.1) to Eq. (B.2), we
changed the integral variables as ys → yt+t0−s (so that ẏs → −ẏs , yt → y0 and
y0 → yt ). Therefore, we obtain E (v)

w (λ, t) = E (−v)
w (1 − λ, t), whose combination

with Eq (49) leads to Eq. (50).
Moreover, from Eqs. (47) and (50) we derive

Pw(W, t) = 1

2π

∫ +∞

−∞
dλ eiλWE (v)

w (1 − iλ, t)

= 1

2π

∫ +∞−i

−∞−i
dµ e(1−iµ)WE (v)

w (iµ, t) (B.4)

= eW 1

2π

∫ +∞

−∞
dµ eiµ(−W )E (v)

w (iµ, t) (B.5)

= eW Pw(−W, t) (B.6)

with µ ≡ −λ − i . Here, in the transformation from Eq. (B.4) to Eq. (B.5) we used
that, noting Eq. (48), the function E (v)

w (iµ, t) exp[(1 − iµ)W ] appearing in Eq.
(B.4) does not have any pole in the complex plane for Im{µ} ∈ [0,−1], where
Im{µ} is the imaginary part of µ. Using Eq. (B.6) we obtain Eq. (51).

APPENDIX C: FUNCTIONAL INTEGRAL CALCULATION FOR THE

WORK DISTRIBUTION

In this appendix, we give calculation details for Eqs. (55), (57) and (60).
Inserting Eq. (10) and (13) into Eq. (54), we obtain

d2 ỹ∗
s

ds2
= ỹ∗

s + (1 − 2λ)vτ

τ 2
(C.1)

where we used the relations α = κτ and D = 1/(αβ). [Note that Eq. (C.1) for ỹ∗
s

is Eq. (37) for y∗
s except that Eq. (C.1) uses (1 − 2λ)v instead of v in Eq. (37).]
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The solution of Eq. (C.1) is given by

ỹ∗
s + (1 − 2λ)vτ = Ã1 exp

( s

τ

)
+ Ã2 exp

(
− s

τ

)
. (C.2)

Here, Ã1 and Ã2 are constants determined by the conditions ỹ∗
t = yt and ỹ∗

0(=
ỹ∗

t0 ) = y0, namely
(

y0 + (1 − 2λ)vτ

yt + (1 − 2λ)vτ

)
=

(
exp

( t0
τ

)
exp

(− t0
τ

)

exp
(

t
τ

)
exp

(− t
τ

)

)(
Ã1

Ã2

)
. (C.3)

Solving Eq. (C.3) for Ã1 and Ã2 we obtain
(

Ã1

Ã2

)
=

⎛

⎝
A((1−2λ)v)

t−t0 (yt , y0) exp
(− t

τ

)

A((1−2λ)v)
−(t−t0) (yt , y0) exp

(
t
τ

)

⎞

⎠ (C.4)

with the function A(v)
t−t0 (yt , y0) defined by Eq. (56). Further, we note

A(v)
−(t−t0)(yt , y0) = A(v)

t−t0 (y0, yt )bt . (C.5)

which can be shown with Eq. (56). Using Eqs. (C.2), (C.4) and (C.5) we obtain
Eq. (55).

Noting that the Lagrangian function L (v)(ẏs, ys) defined by Eq. (13) and the
work rate Ẇ (v)(ys) given by Eq. (10) are taken to second order in ys (z̃s) and ẏs

(˙̃zs) [cf. Eq. (58)], we obtain
∫ t

t0

ds
[
L (v)(ẏs, ys) − λβẆ (ys)

]

=
∫ t

t0

ds
[
L (v)( ˙̃y∗

s + ˙̃zs, ỹ∗
s + z̃s) − λβẆ (ỹ∗

s + z̃s)
]

=
∫ t

t0

ds
{

L (v)( ˙̃y∗
s, ỹ∗

s) − λβẆ (ỹ∗
s)

+ ∂
[
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s)
]

∂ ˙̃y∗
s

˙̃zs

+ ∂
[
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s)
]

∂ ỹ∗
s

z̃s

+ 1

2

∂2
[
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s)
]

∂ ˙̃y∗
s

2
˙̃z

2
s

+ ∂2
[
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s)
]

∂ ˙̃y∗
s∂ ỹ∗

s

˙̃zs z̃s
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+ 1

2

∂2
[
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s)
]

∂ ỹ∗
s

2
z̃2

s

}

=
∫ t

t0

ds

{
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s)

−
[

d

ds

∂L (v)( ˙̃y∗
s, ỹ∗

s)

∂ ˙̃y∗
s

− ∂L (v)( ˙̃y∗
s, ỹ∗

s)

∂ ỹ∗
s

+ λβ
∂Ẇ (ỹ∗

s)

∂ ỹ∗
s

]
z̃s

− 1

4D

(
˙̃z

2
s + 2

τ
˙̃zs z̃s + 1

τ 2
z̃2

s

)}

=
∫ t

t0

ds
[
L (v)( ˙̃y∗

s, ỹ∗
s) − λβẆ (ỹ∗

s) + L (0)(˙̃zs, z̃s)
]

(C.6)

using a partial integration and Eqs. (13), (54) and (58). Inserting Eq. (C.6) into
Eq. (53) we obtain Eq. (57).

Noting tn ≡ t0 + n�tN , n = 1, 2, · · · , N , �tN ≡ (t − t0)/N , the initial time
t0, the final time tN = t , and z̃0 ≡ z̃t0 = 0 from Eq. (59), we have

k∑

n=0

(ϕ z̃tn + z̃tn+1 )2

=
k∑

n=1

[
An(ϕ) + ϕ2

] [
z̃tn + ϕ

An(ϕ) + ϕ2
z̃tn+1

]2

+Ak+1(ϕ)z̃k+1, (C.7)

for a constant ϕ and k = 1, 2, · · ·, where An(ϕ) is defined by

An(ϕ) ≡ 1
∑n−1

k=0 ϕ2k
= 1 − ϕ2

1 − ϕ2n
. (C.8)

We can prove Eq. (C.7) for any integer k by mathematical induction, using the fact
that the function An(ϕ) given by Eq. (C.8) satisfies the recurrence formula

An+1(ϕ) = An(ϕ)

An(ϕ) + ϕ2
. (C.9)

Using Eq. (C.7) and z̃tN = z̃t = 0 from Eq. (59), we obtain

N−1∑

n=0

(ϕ z̃tn + z̃tn+1 )2 =
N−1∑

n=1

[
An(ϕ) + ϕ2

] [
z̃tn + ϕ

An(ϕ) + ϕ2
z̃tn+1

]2

(C.10)
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for a any constant ϕ and k = 1, 2, · · ·. Using the functional integral (14), the La-
grangian function (13) for v = 0, Eq. (C.10) for ϕ = ϕN ≡ (�tN /τ ) −1, we obtain

∫ z̃t

z̃0

Dz̃s exp

[∫ t

t0

ds L (0)(˙̃zs, z̃s)

]

= lim
N→+∞

(
1

4π D�tN

)N/2 ∫
dz̃tN−1

∫
dz̃tN−2 · · ·

∫
dz̃t1

× exp

[
N−1∑

n=0

�tN L (0)

(
z̃tn+1 − z̃tn

�tN
, z̃tn

)]

= lim
N→+∞

(
1

4π D�tN

)N/2 ∫
dz̃tN−1

∫
dz̃tN−2 · · ·

∫
dz̃t1

× exp

[
− 1

4D�tN

N−1∑

n=0

(ϕN z̃tn + z̃tn+1 )2

]

= lim
N→+∞

(
1

4π D�tN

)N/2 ∫
dz̃tN−1

∫
dz̃tN−2 · · ·

∫
dz̃t1

× exp

{
− 1

4D�tN

N−1∑

n=1

[
An(ϕN ) + ϕ2

N

]

×
[

z̃tn + ϕN

An(ϕN ) + ϕ2
N

z̃tn+1

]2
}

= lim
N→+∞

1√
4π D�tN

N−1∏

n=1

1√
An(ϕN ) + ϕ2

N

= lim
N→+∞

1√
4π D�tN

N−1∏

n=1

√
An+1(ϕN )

An(ϕN )

= lim
N→+∞

√
AN (ϕN )

4π D�tN

= lim
N→+∞

{
2π Dτ

(
1 − t − t0

2τ N

)−1
[

1 −
(

1 − t − t0
τ N

)2N
]}−1/2

= 1√
2π Dτ

(
1 − b2

t

) (C.11)
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where we used Eqs. (C.8), (C.9) and exp(X ) = limN→+∞(1 + X/N )N for any X .
From Eq. (C.11) and Tt = (τ/2)(1 − b2

t ) we derive Eq. (60).

APPENDIX D: NONEQUILIBRIUM DETAILED BALANCE

INCLUDING INERTIA

In this appendix, we give a derivation of Eq. (97).
Using Eq. (96) we have

L (v)(ÿs, ẏs, ys)

= − 1

4D

[
−ẏs + 1

τ
ys ± v + m

α
ÿs + 2ẏs + (1 ∓ 1)v

]2

= − 1

4D

(
−ẏs + 1

τ
ys ± v + m

α
ÿs

)2

− 1

D

(
1

τ
ys ± v + m

α
ÿs

)
ẏs

− 1

D

(
ẏs + 1

τ
ys + m

α
ÿs

)
1 ∓ 1

2
v

= L (±v) (ÿs,−ẏs, ys)

−β

[
(mÿs + κys)

(
ẏs + 1 ∓ 1

2
v

)
+ α ẏs

1 ± 1

2
v

]

= L (±v) (ÿs,−ẏs, ys) − β [mÿs(ẏs + ϑv) + κys ẏs] + βmÿsϑv

−β (mÿs + κys)
1 ∓ 1

2
v − βα ẏs

1 ± 1

2
v

= L (±v) (ÿs,−ẏs, ys) − β
d

ds

[
1

2
m(ẏs + ϑv)2 + 1

2
κy2

s

]

−β

[
κys

1 ∓ 1

2
+ α ẏs

1 ± 1

2
+ mÿs

(
1 ∓ 1

2
− ϑ

)]
v

= L (±v) (ÿs,−ẏs, ys) − β
dH(ẏs + ϑv, ys)

ds
+ β�±(ÿs, ẏs, ys ; ϑ)v

(D.1)

where we used Eqs. (95) and (98), and ϑ is a parameter. Equation (D.1) leads to

e−β
∫ t

t0
ds �±(ÿs ,ẏs ,ys ;ϑ)ve

∫ t
t0

ds L (v)(ÿs ,ẏs ,ys )e−βH(ẏ0+ϑv,y0)

= e−βH(ẏt +ϑv,yt )e
∫ t

t0
ds L (±v)(ÿs ,−ẏs ,ys )

. (D.2)

Equation (97) is then derived from Eq. (D.2), using Eq. (94).
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